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1 Probability and You

Whether you like it or not, probabilities rule your life. If you have
ever tried to make a living as a gambler, you are painfully aware
of this, but even those of us with more mundane life stories are
constantly affected by these little numbers.

Example 1.1. Some examples from daily life where probability
calculations are involved are the determination of insurance premi-
ums, the introduction of new medications on the market, opinion
polls, weather forecasts, and DNA evidence in courts. Probabil-
ities also rule who you are. Did daddy pass you the X or the Y
chromosome? Did you inherit grandma’s big nose?

Meanwhile, in everyday life, many of us use probabilities in our
language and say things like “I’m 99% certain” or “There is a one-
in-a-million chance” or, when something unusual happens, ask the
rhetorical question “What are the odds?”. [15, p 1]

1.1 Randomness

1.2. Many clever people have thought about and debated what
randomness really is, and we could get into a long philosophical
discussion that could fill up a whole book. Let’s not. The French
mathematician Laplace (1749–1827) put it nicely:

“Probability is composed partly of our ignorance, partly
of our knowledge.”
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Inspired by Laplace, let us agree that you can use probabilities
whenever you are faced with uncertainty. [15, p 2]

1.3. Random phenomena arise because of [10]:

(a) our partial ignorance of the generating mechanism

(b) the laws governing the phenomena may be fundamentally ran-
dom (as in quantum mechanics)

(c) our unwillingness to carry out exact analysis because it is not
worth the trouble

Example 1.4. Communication Systems [22]: The essence of
communication is randomness.

(a) Random Source: The transmitter is connected to a random
source, the output of which the receiver cannot predict with
certainty.

• If a listener knew in advance exactly what a speaker
would say, and with what intonation he would say it,
there would be no need to listen!

(b) Noise: There is no communication problem unless the trans-
mitted signal is disturbed during propagation or reception in
a random way.

(c) Probability theory is used to evaluate the performance of com-
munication systems.

Example 1.5. Random numbers are used directly in the transmis-
sion and security of data over the airwaves or along the Internet.

(a) A radio transmitter and receiver could switch transmission
frequencies from moment to moment, seemingly at random,
but nevertheless in synchrony with each other.

(b) The Internet data could be credit-card information for a con-
sumer purchase, or a stock or banking transaction secured by
the clever application of random numbers.
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Example 1.6. Randomness is an essential ingredient in games of
all sorts, computer or otherwise, to make for unexpected action
and keen interest.

Example 1.7. On a more profound level, quantum physicists
teach us that everything is governed by the laws of probability.
They toss around terms like the Schrödinger wave equation and
Heisenberg’s uncertainy principle, which are much too difficult for
most of us to understand, but one thing they do mean is that the
fundamental laws of physics can only be stated in terms of proba-
bilities. And the fact that Newton’s deterministic laws of physics
are still useful can also be attributed to results from the theory of
probabilities. [15, p 2]

1.8. Most people have preconceived notions of randomness that
often differ substantially from true randomness. Truly random
data sets often have unexpected properties that go against intuitive
thinking. These properties can be used to test whether data sets
have been tampered with when suspicion arises. [20, p 191]

• [11, p 174]: “people have a very poor conception of random-
ness; they do not recognize it when they see it and they cannot
produce it when they try”

Example 1.9. Apple ran into an issue with the random shuffling
method it initially employed in its iPod music players: true ran-
domness sometimes produces repetition, but when users heard the
same song or songs by the same artist played back-to-back, they
believed the shuffling wasn’t random. And so the company made
the feature “less random to make it feel more random,” said Apple
founder Steve Jobs. [11, p 175]

1.2 Background on some frequently used examples

Probabilists love to play with coins and dice. We like the idea of
tossing coins, rolling dice, and drawing cards as experiments that
have equally likely outcomes.

1.10. Coin flipping or coin tossing is the practice of throwing
a coin in the air to observe the outcome.
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When a coin is tossed, it does not necessarily fall heads or
tails; it can roll away or stand on its edge. Nevertheless, we shall
agree to regard “head” (H) and “tail” (T) as the only possible
outcomes of the experiment. [3, p 7]

• Typical experiment includes

◦ “Flip a coin N times. Observe the sequence of heads and
tails” or “Observe the number of heads.”

1.11. Historically, dice is the plural of die , but in modern stan-
dard English dice is used as both the singular and the plural. [Ex-
cerpted from Compact Oxford English Dictionary.]

• Usually assume six-sided dice

• Usually observe the number of dots on the side facing up-
wards.

1.12. A complete set of cards is called a pack or deck.

(a) The subset of cards held at one time by a player during a
game is commonly called a hand.

(b) For most games, the cards are assembled into a deck, and
their order is randomized by shuffling.

(c) A standard deck of 52 cards in use today includes thirteen
ranks of each of the four French suits.

• The four suits are called spades (♠), clubs (♣), hearts
(♥), and diamonds (♦). The last two are red, the first
two black.

(d) There are thirteen face values (2, 3, . . . , 10, jack, queen, king,
ace) in each suit.

• Cards of the same face value are called of the same kind.

• “court” or face card: a king, queen, or jack of any suit.

(e) For our purposes, playing bridge means distributing the cards
to four players so that each receives thirteen cards. Playing
poker, by definition, means selecting five cards out of the pack.
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1.3 A Glimpse at Probability

1.13. Probabilities are used in situations that involve random-
ness. A probability is a number used to describe how likely
something is to occur, and probability (without indefinite arti-
cle) is the study of probabilities. It is the art of being certain
of how uncertain you are . [15, p 2–4] If an event is certain to
happen, it is given a probability of 1. If it is certain not to happen,
it has a probability of 0. [5, p 66]

1.14. Probabilities can be expressed as fractions, as decimal num-
bers, or as percentages. If you toss a coin, the probability to get
heads is 1/2, which is the same as 0.5, which is the same as 50%.
There are no explicit rules for when to use which notation.

• In daily language, proper fractions are often used and often
expressed, for example, as “one in ten” instead of 1/10 (“one
tenth”). This is also natural when you deal with equally likely
outcomes.

• Decimal numbers are more common in technical and sci-
entific reporting when probabilities are calculated from data.
Percentages are also common in daily language and often with
“chance” replacing “probability.”

• Meteorologists, for example, typically say things like “there
is a 20% chance of rain.” The phrase “the probability of rain
is 0.2” means the same thing.

• When we deal with probabilities from a theoretical viewpoint,
we always think of them as numbers between 0 and 1, not as
percentages.

• See also 3.7.

[15, p 10]

Definition 1.15. Important terms [10]:

(a) An activity or procedure or observation is called a random
experiment if its outcome cannot be predicted precisely be-
cause the conditions under which it is performed cannot be
predetermined with sufficient accuracy and completeness.
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• The term “experiment” is to be construed loosely. We do
not intend a laboratory situation with beakers and test
tubes.

• Tossing/flipping a coin, rolling a die, and drawing a card
from a deck are some examples of random experiments.

(b) A random experiment may have several separately identifiable
outcomes. We define the sample space Ω as a collection
of all possible (separately identifiable) outcomes/results/mea-
surements of a random experiment. Each outcome (ω) is an
element, or sample point, of this space.

• Rolling a dice has six possible identifiable outcomes
(1, 2, 3, 4, 5, and 6).

(c) Events are sets (or classes) of outcomes meeting some spec-
ifications.

• Any event is a subset of Ω.

• Intuitively, an event is a statement about the outcome(s)
of an experiment.

• For our class, it may be less confusing to allow event A
to be any collection of outcomes (, i.e. any subset of Ω).

◦ In more advanced courses, when we deal with un-
countable Ω, we limit our interest to only some subsets
of Ω. Technically, the collection of these subsets must
form a σ-algebra.

The goal of probability theory is to compute the probability of var-
ious events of interest. Hence, we are talking about a set function
which is defined on (some class of) subsets of Ω.

Example 1.16. The statement “when a coin is tossed, the prob-
ability to get heads is l/2 (50%)” is a precise statement.

(a) It tells you that you are as likely to get heads as you are to
get tails.
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(b) Another way to think about probabilities is in terms of aver-
age long-term behavior. In this case, if you toss the coin
repeatedly, in the long run you will get roughly 50% heads
and 50% tails.

[15, p 4]

1.17. Long-run frequency interpretation : If the probability
of an event A in some actual physical experiment is p, then we
believe that if the experiment is repeated independently over and
over again, then a theorem called the law of large numbers
(LLN) states that, in the long run, the event A will happen ap-
proximately 100p% of the time. In other words, if we repeat an
experiment a large number of times then the fraction of times the
event A occurs will be close to P (A).

Definition 1.18. Let A be one of the events of a random exper-
iment. If we conduct a sequence of n independent trials of this
experiment, and if the event A occurs in N(A, n) out of these n
trials, then the fraction

is called the relative frequency of the event A in these n trials.
The long-run frequency interpretation mentioned in 1.17 can be

restated as

P (A) “=” lim
n→∞

N(A, n)

n
.
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1.19. In terms of practical range, probability theory is comparable
with geometry ; both are branches of applied mathematics that
are directly linked with the problems of daily life. But while pretty
much anyone can call up a natural feel for geometry to some extent,
many people clearly have trouble with the development of a good
intuition for probability.

• Probability and intuition do not always agree. In no other
branch of mathematics is it so easy to make mistakes
as in probability theory.

• Students facing difficulties in grasping the concepts of prob-
ability theory might find comfort in the idea that even the
genius Leibniz, the inventor of differential and integral cal-
culus along with Newton, had difficulties in calculating the
probability of throwing 11 with one throw of two dice.

[20, p 4]
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2 Review of Set Theory

2.1. If ω is a member of a set A, we write ω ∈ A.

Definition 2.2. Basic set operations (set algebra)

• Complementation: Ac = {ω : ω /∈ A}.

• Union: A ∪B = {ω : ω ∈ A or ω ∈ B}

◦ Here “or”is inclusive; i.e., if ω ∈ A, we permit ω to belong
either to A or to B or to both.

• Intersection: A ∩B = {ω : ω ∈ A and ω ∈ B}

◦ Hence, ω ∈ A if and only if ω belongs to both A and B.

◦ A ∩B is sometimes written simply as AB.

• The set difference operation is defined by B \A = B ∩Ac.

◦ B \ A is the set of ω ∈ B that do not belong to A.

◦ When A ⊂ B, B \A is called the complement of A in B.

2.3. Basic Set Identities:

• Idempotence: (Ac)c = A

• Commutativity (symmetry):

A ∪B = B ∪ A , A ∩B = B ∩ A

• Associativity:

◦ A ∩ (B ∩ C) = (A ∩B) ∩ C
◦ A ∪ (B ∪ C) = (A ∪B) ∪ C

• Distributivity
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◦ A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

◦ A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

• de Morgan laws

◦ (A ∪B)c = Ac ∩Bc

◦ (A ∩B)c = Ac ∪Bc

2.4. Venn diagram is very useful in set theory. Many identities
can be read out simply by examining Venn diagrams.

2.5. Disjoint Sets:

• Sets A and B are said to be disjoint (A ⊥ B) if and only if
A ∩B = ∅. (They do not share member(s).)

• A collection of sets (Ai : i ∈ I) is said to be pairwise dis-
joint or mutually exclusive [7, p. 9] if and only if Ai∩Aj = ∅
when i 6= j.

2.6. For a set of sets, to avoid the repeated use of the word “set”,
we will call it a collection/class/family of sets.

Definition 2.7. Given a set S, a collection Π = (Aα : α ∈ I) of
subsets1 of S is said to be a partition of S if

(a) S =
⋃
Aα∈I and

(b) For all i 6= j, Ai ⊥ Aj (pairwise disjoint).

Remarks:

• The subsets Aα, α ∈ I are called the parts of the partition.

• A part of a partition may be empty, but usually there is no
advantage in considering partitions with one or more empty
parts.

Example 2.8 (Slide:maps).

1In this case, the subsets are indexed or labeled by α taking values in an index or label
set I
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Example 2.9. Let E be the set of students taking IES302

Definition 2.10. The cardinality (or size) of a collection or set
A, denoted |A|, is the number of elements of the collection. This
number may be finite or infinite.

• An infinite set A is said to be countable if the elements of
A can be enumerated or listed in a sequence: a1, a2, . . . .

◦ Empty set and finite sets are also said to be countable.

• By a countably infinite set, we mean a countable set that
is not finite. Examples of such sets include

◦ the set N = {1, 2, 3, . . . } of natural numbers,

◦ the set {2k : k ∈ N} of all even numbers,

◦ the set {2k + 1 : k ∈ N} of all odd numbers,

◦ the set Z of integers,

◦ the set Q of all rational numbers,

◦ the set Q+ of positive rational numbers,

◦ the set of all finite-length sequences of natural numbers,

◦ the set of all finite subsets of the natural numbers.

• A singleton is a set with exactly one element.

◦ Ex. {1.5}, {.8}, {π}.
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Set Theory Probability Theory
Set Event

Universal set Sample Space (Ω)
Element Outcome (ω)

Table 1: The terminology of set theory and probability theory

◦ Caution: Be sure you understand the difference between
the outcome -8 and the event {−8}, which is the set con-
sisting of the single outcome −8.

2.11. We can categorize sets according to their cardinality:

Example 2.12. Example of uncountable sets2:

• R = (−∞,∞)

• interval [0, 1]

• interval (0, 1]

• (2, 3) ∪ [5, 7)

Definition 2.13. Probability theory renames some of the termi-
nology in set theory. See Table 1 and Table 2.

• Sometimes, ω’s are called states, and Ω is called the state
space.

2We use a technique called diagonal argument to prove that a set is not countable and
hence uncountable.
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Event Language
A A occurs
Ac A does not occur

A ∪B Either A or B occur
A ∩B Both A and B occur

Table 2: Event Language

2.14. Because of the mathematics required to determine proba-
bilities, probabilistic methods are divided into two distinct types,
discrete and continuous. A discrete approach is used when the
number of experimental outcomes is finite (or infinite but count-
able). A continuous approach is used when the outcomes are con-
tinuous (and therefore infinite). It will be important to keep in
mind which case is under consideration since otherwise, certain
paradoxes may result.
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3 Classical Probability

Classical probability, which is based upon the ratio of the number
of outcomes favorable to the occurrence of the event of interest to
the total number of possible outcomes, provided most of the prob-
ability models used prior to the 20th century. It is the first type
of probability problems studied by mathematicians, most notably,
Frenchmen Fermat and Pascal whose 17th century correspondence
with each other is usually considered to have started the system-
atic study of probabilities. [15, p 3] Classical probability remains
of importance today and provides the most accessible introduction
to the more general theory of probability.

Definition 3.1. Given a finite sample space Ω, the classical
probability of an event A is

P (A) =
|A|
|Ω| (1)

[4, Defn. 2.2.1 p 58]. In traditional language, a probability is
a fraction in which the bottom represents the number of possi-
ble outcomes, while the number on top represents the number of
outcomes in which the event of interest occurs.

• Assumptions: When the following are not true, do not calcu-
late probability using (1).

◦ Finite Ω: The number of possible outcomes is finite.

◦ Equipossibility: The outcomes have equal probability of
occurrence.

• The bases for identifying equipossibility were often

◦ physical symmetry (e.g. a well-balanced die, made of
homogeneous material in a cubical shape) or

◦ a balance of information or knowledge concerning the var-
ious possible outcomes.

• Equipossibility is meaningful only for finite sample space, and,
in this case, the evaluation of probability is accomplished
through the definition of classical probability.
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• We will NOT use this definition beyond this section. We will
soon introduce a formal definition in Section 5.

Example 3.2 (Slide). In drawing a card from a deck, there are 52
equally likely outcomes, 13 of which are diamonds. This leads to
a probability of 13/52 or 1/4.

3.3. Basic properties of classical probability: From Definition 3.1,
we can easily verified the properties below.

• P (A) ≥ 0

• P (Ω) = 1

• P (∅) = 0

• P (Ac) = 1− P (A)

• P (A ∪ B) = P (A) + P (B)− P (A ∩ B) which comes directly
from

|A ∪B| = |A|+ |B| − |A ∩B|.

• A ⊥ B ⇒ P (A ∪B) = P (A) + P (B)

• Suppose Ω = {ω1, . . . , ωn} and P ({ωi}) = 1
n . Then P (A) =∑

ω∈A
P ({ω}).

◦ The probability of an event is equal to the sum of the
probabilities of its component outcomes because outcomes
are mutually exclusive

3.4. In classical probability theory defined by Definition 3.1,

A ⊥ B is equivalent to P (A ∩B) = 0.

However, In general probability theory, the above statement is
NOT true.

Example 3.5 (Slides). When rolling two dice, there are 36 (equiprob-
able) possibilities.

P [sum of the two dice = 5] = 4/36.
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Example 3.6. Chevalier de Mere’s Scandal of Arithmetic:

Which is more likely, obtaining at least one six in 4 tosses
of a fair die (event A), or obtaining at least one double
six in 24 tosses of a pair of dice (event B)?

We have

P (A) =
64 − 54

64
= 1−

(
5

6

)4

≈ .518

and

P (B) =
3624 − 3524

3624 = 1−
(

35

36

)24

≈ .491.

Therefore, the first case is more probable.
Remark 1: Probability theory was originally inspired by gam-

bling problems. In 1654, Chevalier de Mere invented a gambling
system which bet even money3 on event B above. However, when
he began losing money, he asked his mathematician friend Pas-
cal to analyze his gambling system. Pascal discovered that the
Chevalier’s system would lose about 51 percent of the time. Pas-
cal became so interested in probability and together with another
famous mathematician, Pierre de Fermat, they laid the foundation
of probability theory. [U-X-L Encyclopedia of Science]

Remark 2: de Mere originally claimed to have discovered a
contradiction in arithmetic. De Mere correctly knew that it was
advantageous to wager on occurrence of event A, but his experience
as gambler taught him that it was not advantageous to wager on
occurrence of event B. He calculated P (A) = 1/6 + 1/6 + 1/6 +
1/6 = 4/6 and similarly P (B) = 24 × 1/36 = 24/36 which is
the same as P (A). He mistakenly claimed that this evidenced a
contradiction to the arithmetic law of proportions, which says that
4
6 should be the same as 24

36 . Of course we know that he could not
simply add up the probabilities from each tosses. (By De Meres
logic, the probability of at least one head in two tosses of a fair
coin would be 2× 0.5 = 1, which we know cannot be true). [20, p
3]

3Even money describes a wagering proposition in which if the bettor loses a bet, he or she
stands to lose the same amount of money that the winner of the bet would win.
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Definition 3.7. In the world of gambling, probabilities are often
expressed by odds. To say that the odds are n:1 against the event
A means that it is n times as likely that A does not occur than
that it occurs. In other words, P (Ac) = nP (A) which implies
P (A) = 1

n+1 and P (Ac) = n
n+1 .

“Odds” here has nothing to do with even and odd numbers.
The odds also mean what you will win, in addition to getting your
stake back, should your guess prove to be right. If I bet $1 on a
horse at odds of 7:1, I get back $7 in winnings plus my $1 stake.
The bookmaker will break even in the long run if the probability
of that horse winning is 1/8 (not 1/7). Odds are “even” when they
are 1:1 - win $1 and get back your original $1. The corresponding
probability is 1/2.

3.8. It is important to remember that classical probability relies
on the assumption that the outcomes are equally likely.

Example 3.9. Mistake made by the famous French mathemati-
cian Jean Le Rond d’Alembert (18th century) who is an author of
several works on probability:

“The number of heads that turns up in those two tosses can
be 0, 1, or 2. Since there are three outcomes, the chances of each
must be 1 in 3.”
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4 Enumeration / Combinatorics / Counting

There are many probability problems, especially those concerned
with gambling, that can ultimately be reduced to questions about
cardinalities of various sets. Combinatorics is the study of sys-
tematic counting methods, which we will be using to find the car-
dinalities of various sets that arise in probability.

4.1. Addition Principle (Rule of sum):

• When there are m cases such that the ith case has ni options,
for i = 1, . . . ,m, and no two of the cases have any options in
common, the total number of options is n1 + n2 + · · ·+ nm.

• In set-theoretic terms, suppose that a finite set S can be par-
titioned into (pairwise disjoint parts) S1, S2, . . . , Sm. Then,

|S| = |S1|+ |S2|+ · · ·+ |Sm|.

• The art of applying the addition principle is to partition the
set S to be counted into “manageable parts”; that is, parts
which we can readily count. But this statement needs to be
qualified. If we partition S into too many parts, then we
may have defeated ourselves. For instance, if we partition 8
into parts each containing only one element, then applying
the addition principle is the same as counting the number of
parts, and this is basically the same as listing all the objects
of S. Thus, a more appropriate description is that the art of
applying the addition principle is to partition the set S into
not too many manageable parts.[1, p 28]

Example 4.2. [1, p 28] Suppose we wish to find the number of
different courses offered by SIIT. We partition the courses accord-
ing to the department in which they are listed. Provided there is
no cross-listing (cross-listing occurs when the same course is listed
by more than one department), the number of courses offered by
SIIT equals the sum of the number of courses offered by each de-
partment.
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Example 4.3. [1, p 28] A student wishes to take either a mathe-
matics course or a biology course, but not both. If there are four
mathematics courses and three biology courses for which the stu-
dent has the necessary prerequisites, then the student can choose
a course to take in 4 + 3 = 7 ways.

4.4. Multiplication Principle (Rule of product):

• When a procedure can be broken down into m steps, such
that there are n1 options for step 1, and such that after the
completion of step i − 1 (i = 2, . . . ,m) there are ni options
for step i, the number of ways of performing the procedure is
n1n2 · · ·nm.

• In set-theoretic terms, if sets S1, . . . , Sm are finite, then |S1×
S2 × · · · × Sm| = |S1| · |S2| · · · · · |Sm|.

• For k finite sets A1, ..., Ak, there are |A1| · · · |Ak| k-tuples of
the form (a1, . . . , ak) where each ai ∈ Ai.

Example 4.5. Let A, B, and C be finite sets. How many triples
are there of the form (a,b,c), where a ∈ A, b ∈ B, c ∈ C?

Example 4.6. Suppose that a deli offers three kinds of bread,
three kinds of cheese, four kinds of meat, and two kinds of mustard.
How many different meat and cheese sandwiches can you make?

First choose the bread. For each choice of bread, you then
have three choices of cheese, which gives a total of 3 × 3 = 9
bread/cheese combinations (rye/swiss, rye/provolone, rye/ched-
dar, wheat/swiss, wheat/provolone ... you get the idea). Then
choose among the four kinds of meat, and finally between the
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two types of mustard or no mustard at all. You get a total of
3× 3× 4× 3 = 108 different sandwiches.

Suppose that you also have the choice of adding lettuce, tomato,
or onion in any combination you want. This choice gives another
2 x 2 x 2 = 8 combinations (you have the choice “yes” or “no”
three times) to combine with the previous 108, so the total is now
108× 8 = 864.

That was the multiplication principle. In each step you have
several choices, and to get the total number of combinations, mul-
tiply. It is fascinating how quickly the number of combinations
grow. Just add one more type of bread, cheese, and meat, respec-
tively, and the number of sandwiches becomes 1,920. It would take
years to try them all for lunch. [15, p 33]

Example 4.7 (Slides). In 1961, Raymond Queneau, a French poet
and novelist, wrote a book called One Hundred Thousand Billion
Poems. The book has ten pages, and each page contains a sonnet,
which has 14 lines. There are cuts between the lines so that each
line can be turned separately, and because all lines have the same
rhyme scheme and rhyme sounds, any such combination gives a
readable sonnet. The number of sonnets that can be obtained in
this way is thus 1014 which is indeed a hundred thousand billion.
Somebody has calculated that it would take about 200 million
years of nonstop reading to get through them all. [15, p 34]

Example 4.8. [1, p 29–30] Determine the number of positive in-
tegers that are factors of the number

34 × 52 × 117 × 138.

The numbers 3,5,11, and 13 are prime numbers. By the funda-
mental theorem of arithmetic, each factor is of the form

3i × 5j × 11k × 13`,

where 0 ≤ i ≤ 4, 0 ≤ j ≤ 2, 0 ≤ k ≤ 7, and 0 ≤ ` ≤ 8. There are
five choices for i, three for j, eight for k, and nine for `. By the
multiplication principle, the number of factors is

5× 3× 8× 9 = 1080.
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4.9. Subtraction Principle : Let A be a set and let S be a
larger set containing A. Then

|A| = |S| − |S \ A|

• When S is the same as Ω, we have |A| = |S| − |Ac|

• Using the subtraction principle makes sense only if it is easier
to count the number of objects in S and in S \ A than to
count the number of objects in A.

4.10. Division Principle (Rule of quotient): When a finite
set S is partitioned into equal-sized parts of m elements each, there
are |S|m parts.

4.1 Four kinds of counting problems

4.11. Choosing objects from a collection is also called sampling,
and the chosen objects are known as a sample. The four kinds of
counting problems are [7, p 34]:

(a) ordered sampling of r out of n items with replacement: nr;

(b) ordered sampling of r ≤ n out of n items without replacement:
(n)r;

(c) unordered sampling of r ≤ n out of n items without replace-
ment:

(
n
r

)
;

(d) unordered sampling of r out of n items with replacement:(
n+r−1

r

)
.

• See 4.20 for “bars and stars” argument.

4.12. Given a set of n distinct items/objects, select a distinct
ordered4 sequence (word) of length r drawn from this set.

(a) Ordered Sampling with replacement : µn,r = nr

• Meaning

4Different sequences are distinguished by the order in which we choose objects.
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◦ Ordered sampling of r out of n items with replace-
ment.

∗ An object can be chosen repeatedly.

• µn,1 = n

• µ1,r = 1

• Examples:

◦ From a deck of n cards, we draw r cards with re-
placement; i.e., we draw each card, make a note of it,
put the card back in the deck and re-shuffle the deck
before choosing the next card. How many different
sequences of r cards can be drawn in this way?

◦ There are 2r binary strings/sequences of length r.

(b) Ordered Sampling without replacement :

(n)r =
r−1∏
i=0

(n− i) =
n!

(n− r)!
= n · (n− 1) · · · (n− (r − 1))︸ ︷︷ ︸

r terms

; r ≤ n

• Meaning

◦ Ordered sampling of r ≤ n out of n items without
replacement.

∗ Once we choose an object, we remove that object
from the collection and we cannot choose it again.

◦ “the number of possible r-permutations of n distin-
guishable objects”

◦ the number of sequences5 of size r drawn from an
alphabet of size n without replacement.

5Elements in a sequence are ordered.
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• Example: (3)2 = 3 × 2 = 6 = the number of sequence
of size 2 drawn from an alphabet of size = 3 without
replacement.

Suppose the alphabet set is {A, B, C}. We can list all
sequences of size 2 drawn from {A, B, C} without re-
placement:

A B
A C
B A
B C
C A
C B

• Example: From a deck of 52 cards, we draw a hand of 5
cards without replacement (drawn cards are not placed
back in the deck). How many hands can be drawn in this
way?

• For integers r, n such that r > n, we have (n)r = 0.

• Extended definition: The definition in product form

(n)r =
r−1∏
i=0

(n− i) = n · (n− 1) · · · (n− (r − 1))︸ ︷︷ ︸
r terms

can be extended to any real number n and a non-negative
integer r. We define (n)0 = 1. (This makes sense because
we usually take the empty product to be 1.)

• (n)1 = n

• (n)r = (n−(r−1))(n)r−1. For example, (7)5 = (7−4)(7)4.
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• (1)r =

{
1, if r = 1
0, if r > 1

Example 4.13. (Slides) Finger-Smudge on Touch-Screen Devices

Example 4.14. (Slides) Probability of coincidence birthday : Prob-
ability that there is at least two people who have the same birth-
day6 in a group of r persons:

Example 4.15. It is surprising to see how quickly the probability
in Example 4.14 approaches 1 as r grows larger.

Birthday Paradox : In a group of 23 randomly selected peo-
ple, the probability that at least two will share a birthday (assum-
ing birthdays are equally likely to occur on any given day of the
year7) is about 0.5.

• At first glance it is surprising that the probability of 2 people
having the same birthday is so large8, since there are only 23
people compared with 365 days on the calendar. Some of the
surprise disappears if you realize that there are

(
23
2

)
= 253

pairs of people who are going to compare their birthdays. [2,
p. 9]

6We ignore February 29 which only comes in leap years.
7In reality, birthdays are not uniformly distributed. In which case, the probability of a

match only becomes larger for any deviation from the uniform distribution. This result can
be mathematically proved. Intuitively, you might better understand the result by thinking of
a group of people coming from a planet on which people are always born on the same day.

8In other words, it was surprising that the size needed to have 2 people with the same
birthday was so small.
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Classical Probability 
1) Birthday Paradox: In a group of 23 randomly selected people, the probability that 

at least two will share a birthday (assuming birthdays are equally likely to occur 
on any given day of the year) is about 0.5. See also (3). 
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Figure 1: pu(n, r): The probability of the event that at least one element appears
twice in random sample of size r with replacement is taken from a population
of n elements.

Example 4.16. Another variant of the birthday coincidence para-
dox: The group size must be at least 253 people if you want a
probability > 0.5 that someone will have the same birthday as
you. [2, Ex. 1.13] (The probability is given by 1−

(
364
365

)r
.)

• A naive (but incorrect) guess is that d365/2e = 183 people
will be enough. The “problem” is that many people in the
group will have the same birthday, so the number of different
birthdays is smaller than the size of the group.

• On late-night television’s The Tonight Show with Johnny Car-
son, Carson was discussing the birthday problem in one of his
famous monologues. At a certain point, he remarked to his
audience of approximately 100 people: “Great! There must
be someone here who was born on my birthday!” He was off
by a long shot. Carson had confused two distinctly different
probability problems: (1) the probability of one person out of
a group of 100 people having the same birth date as Carson
himself, and (2) the probability of any two or more people out
of a group of 101 people having birthdays on the same day.
[20, p 76]
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4.17. Factorial and Permutation : The number of arrange-
ments (permutations) of n ≥ 0 distinct items is (n)n = n!.

• For any integer n greater than 1, the symbol n!, pronounced
“n factorial,” is defined as the product of all positive integers
less than or equal to n.

• 0! = 1! = 1

• n! = n(n− 1)!

• Computation:

(a) MATLAB: Use factorial(n). Since double precision num-
bers only have about 15 digits, the answer is only accurate
for n ≤ 21. For larger n, the answer will have the right
magnitude, and is accurate for the first 15 digits.

(b) Google’s web search box built-in calculator: n!

• Meaning: The number of ways that n distinct objects can be
ordered.

◦ A special case of ordered sampling without replacement
where r = n.

• In MATLAB, use perms(v), where v is a row vector of length
n, to creates a matrix whose rows consist of all possible per-
mutations of the n elements of v. (So the matrix will contain
n! rows and n columns.)

• Example: In MATLAB, perms([3 4 7]) gives

7 4 3
7 3 4
4 7 3
4 3 7
3 4 7
3 7 4

Similarly, perms(’abcd’) gives
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dcba dcab dbca dbac dabc dacb
cdba cdab cbda cbad cabd cadb
bcda bcad bdca bdac badc bacd
acbd acdb abcd abdc adbc adcb

4.18. Binomial coefficient :(
n

r

)
=

(n)r
r!

=
n!

(n− r)!r!
(a) Read “n choose r”.

(b) Meaning:

(i) Unordered sampling of r ≤ n out of n items without
replacement

(ii) The number of subsets of size r that can be formed from
a set of n elements (without regard to the order of selec-
tion).

(iii) The number of combinations of n objects selected r at a
time.

(iv) the number of k-combinations of n objects.

(v) The number of (unordered) sets of size r drawn from an
alphabet of size n without replacement.

(c) Computation:

(i) MATLAB:

• nchoosek(n,r), where n and r are nonnegative inte-
gers, returns

(
n
r

)
.
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• nchoosek(v,r), where v is a row vector of length n,
creates a matrix whose rows consist of all possible
combinations of the n elements of v taken r at a time.
The matrix will contains

(
n
r

)
rows and r columns.

◦ Example: nchoosek(’abcd’,2) gives

ab
ac
ad
bc
bd
cd

(ii) Use combin(n,r) in Mathcad. However, to do symbolic
manipulation, use the factorial definition directly.

(iii) In Maple, use
(
n
r

)
directly.

(iv) Google’s web search box built-in calculator: n choose k

(d) Reflection property:
(
n
r

)
=
(
n
n−r
)
.

(e)
(
n
n

)
=
(
n
0

)
= 1.

(f)
(
n
1

)
=
(
n
n−1

)
= n.

(g)
(
n
r

)
= 0 if n < r or r is a negative integer.

(h) max
r

(
n
r

)
=
(

n

bn+1
2 c
)
.

Example 4.19. In bridge, 52 cards are dealt to four players;
hence, each player has 13 cards. The order in which the cards
are dealt is not important, just the final 13 cards each player ends
up with. How many different bridge games can be dealt? (Answer:
53,644,737,765,488,792,839,237,440,000)
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4.20. The bars and stars argument:

• Example: Find all nonnegative integers x1, x2, x3 such that

x1 + x2 + x3 = 3.

0 + 0 + 3 1 1 1
0 + 1 + 2 1 1 1
0 + 2 + 1 1 1 1
0 + 3 + 0 1 1 1
1 + 0 + 2 1 1 1
1 + 1 + 1 1 1 1
1 + 2 + 0 1 1 1
2 + 0 + 1 1 1 1
2 + 1 + 0 1 1 1
2 + 0 + 0 1 1 1

• There are
(
n+r−1

r

)
=
(
n+r−1
n−1

)
distinct vector x = xn1 of non-

negative integers such that x1 + x2 + · · · + xn = r. We use
n− 1 bars to separate r 1’s.

(a) Suppose we further require that the xi are strictly positive
(xi ≥ 1), then there are

(
r−1
n−1

)
solutions.

(b) Extra Lower-bound Requirement : Suppose we fur-
ther require that xi ≥ ai where the ai are some given
nonnegative integers, then the number of solution is(

r − (a1 + a2 + · · ·+ an) + n− 1

n− 1

)
.

Note that here we work with equivalent problem: y1 +
y2 + · · ·+ yn = r −∑n

i=1 ai where yi ≥ 0.

• Consider the distribution of r = 10 indistinguishable balls
into n = 5 distinguishable cells. Then, we only concern with
the number of balls in each cell. Using n − 1 = 4 bars, we
can divide r = 10 stars into n = 5 groups. For example,
****|***||**|* would mean (4,3,0,2,1). In general, there are(
n+r−1

r

)
ways of arranging the bars and stars.
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4.21. Unordered sampling with replacement : There are
n items. We sample r out of these n items with replacement.
Because the order in the sequences is not important in this kind
of sampling, two samples are distinguished by the number of each
item in the sequence. In particular, Suppose r letters are drawn
with replacement from a set {a1, a2, . . . , an}. Let xi be the number
of ai in the drawn sequence. Because we sample r times, we know
that, for every sample, x1 + x2 + · · ·xn = r where the xi are non-
negative integers. Hence, there are

(
n+r−1

r

)
possible unordered

samples with replacement.

4.2 Binomial Theorem and Multinomial Theorem

4.22. Binomial theorem : Sometimes, the number
(
n
r

)
is called

a binomial coefficient because it appears as the coefficient of
xryn−r in the expansion of the binomial (x+y)n. More specifically,
for any positive integer n, we have,

(x+ y)n =
n∑
r=0

(
n

r

)
xryn−r (2)

(Slide) To see how we get (2), let’s consider a smaller case of
n = 3. The expansion of (x+y)3 can be found using combinatorial
reasoning instead of multiplying the three terms out. When (x +
y)3 = (x+y)(x+y)(x+y) is expanded, all products of a term in the
first sum, a term in the second sum, and a term in the third sum
are added. Terms of the form x3, x2y, xy2, and y3 arise. To obtain
a term of the form x3, an x must be chosen in each of the sums,
and this can be done in only one way. Thus, the x3 term in the
product has a coefficient of 1. To obtain a term of the form x2y,
an x must be chosen in two of the three sums (and consequently
a y in the other sum). Hence. the number of such terms is the
number of 2-combinations of three objects, namely,

(
3
2

)
. Similarly,

the number of terms of the form xy2 is the number of ways to pick
one of the three sums to obtain an x (and consequently take a y
from each of the other two terms). This can be done in

(
3
1

)
ways.

Finally, the only way to obtain a y3 term is to choose the y for
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each of the three sums in the product, and this can be done in
exactly one way. Consequently. it follows that

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

Now, let’s state a combinatorial proof of the binomial theorem
(2). The terms in the product when it is expanded are of the form
xryn−r for r = 0, 1, 2, . . . , n. To count the number of terms of the
form xryn−r, note that to obtain such a term it is necessary to
choose r xs from the n sums (so that the other n− r terms in the
product are ys). Therefore. the coefficient of xryn−r is

(
n
r

)
.

From (2), if we let x = y = 1, then we get another important
identity:

n∑
r=0

(
n

r

)
= 2n. (3)

4.23. Multinomial Counting : The multinomial coefficient(
n

n1 n2 ··· nr
)

is defined as

r∏
i=1

(
n−

i−1∑
k=0

nk

ni

)
=

(
n

n1

)
·
(
n− n1

n2

)
·
(
n− n1 − n2

n3

)
· · ·
(
nr
nr

)
=

n!
r∏
i=1

ni!
.

It is the number of ways that we can arrange n =
r∑
i=1

ni tokens when

having r types of symbols and ni indistinguishable copies/tokens
of a type i symbol.

4.24. Multinomial Theorem :

(x1 + . . .+ xr)
n =

∑ n!

i1!i2! · · · ir!
xi11 x

i2
2 · · ·xirr ,

where the sum ranges over all ordered r-tuples of integers i1, . . . , ir
satisfying the following conditions:

i1 ≥ 0, . . . , ir ≥ 0, i1 + i2 + · · ·+ ir = n.

When r = 2 this reduces to the binomial theorem.
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4.3 Application: Success runs

Example 4.25. We are all familiar with “success runs” in many
different contexts. For example, we may be or follow a tennis
player and count the number of consecutive times the player’s first
serve is good. Or we may consider a run of forehand winners. A
basketball player may be on a “hot streak” and hit his or her
shots perfectly for a number of plays in row.

In all the examples, whether you should or should not be amazed
by the observation depends on a lot of other information. There
may be perfectly reasonable explanations for any particular success
run. But we should be curious as to whether randomness could
also be a perfectly reasonable explanation. Could the hot streak
of a player simply be a snapshot of a random process, one that we
particularly like and therefore pay attention to?

In 1985, cognitive psychologists Amos Taversky and Thomas
Gilovich examined9 the shooting performance of the Philadelphia
76ers, Boston Celtics and Cornell University’s men’s basketball
team. They sought to discover whether a player’s previous shot
had any predictive effect on his or her next shot. Despite basketball
fans’ and players’ widespread belief in hot streaks, the researchers
found no support for the concept. (No evidence of nonrandom
behavior.) [11, p 178]

4.26. Academics call the mistaken impression that a random
streak is due to extraordinary performance the hot-hand fallacy.
Much of the work on the hot-hand fallacy has been done in the
context of sports because in sports, performance is easy to define
and measure. Also, the rules of the game are clear and definite,
data are plentiful and public, and situations of interest are repli-
cated repeatedly. Not to mention that the subject gives academics
a way to attend games and pretend they are working. [11, p 178]

Example 4.27. Suppose that two people are separately asked to
toss a fair coin 120 times and take note of the results. Heads is
noted as a “one” and tails as a “zero”. The following two lists of
compiled zeros and ones result

9“The Hot Hand in Basketball: On the Misperception of Random Sequences”
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1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0
0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1

and

1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0
1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0
0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1

One of the two individuals has cheated and has fabricated a list of
numbers without having tossed the coin. Which list is more likely
be the fabricated list? [20, Ex. 7.1 p 42–43]

The answer is later provided in Example 4.33.

Definition 4.28. A run is a sequence of more than one consecu-
tive identical outcomes, also known as a clump.

Definition 4.29. Let Rn represent the length of the longest run
of heads in n independent tosses of a fair coin. Let An(x) be the
set of (head/tail) sequences of length n in which the longest run
of heads does not exceed x. Let an(x) = ‖An(x)‖.
Example 4.30. If a fair coin is flipped, say, three times, we can
easily list all possible sequences:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

and accordingly derive:

x P [R3 = x] a3(x)

0 1/8 1
1 4/8 4
2 2/8 7
3 1/8 8

4.31. Consider an(x). Note that if n ≤ x, then an(x) = 2n because
any outcome is a favorable one. (It is impossible to get more than
three heads in three coin tosses). For n > x, we can partition
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An(x) by the position k of the first tail. Observe that k must be
≤ x + 1 otherwise we will have more than x consecutive heads in
the sequence which contradicts the definition of An(x). For each
k ∈ {1, 2, . . . , x+ 1}, the favorable sequences are in the form

HH . . . H︸ ︷︷ ︸
k−1 heads

T XX . . .X︸ ︷︷ ︸
n−k positions

where, to keep the sequences in An(x), the last n − k positions10

must be in An−k(x). Thus,

an(x) =
x+1∑
k=1

an−k(x) for n > x.

In conclusion, we have

an(x) =

{ ∑x
j=0 an−j−1(x), n > x,

2n n ≤ x

[19]. The following MATLAB function calculates an(x)

function a = a nx(n,x)
a = [2.ˆ(1:x) zeros(1,n−x)];
a(x+1) = 1+sum(a(1:x));
for k = (x+2):n

a(k) = sum(a((k−1−x):(k−1)));
end
a = a(n);

4.32. Similar technique can be used to contract Bn(x) defined as
the set of sequences of length n in which the longest run of heads
and the longest run of tails do not exceed x. To check whether
a sequence is in Bn(x), first we convert it into sequence of S and
D by checking each adjacent pair of coin tosses in the original
sequence. S means the pair have same outcome and D means they
are different. This process gives a sequence of length n−1. Observe
that a string of x−1 consecutive S’s is equivalent to a run of length

10Strictly speaking, we need to consider the case when n = x+ 1 separately. In such case,
when k = x+ 1, we have A0(x). This is because the sequence starts with x heads, then a tail,
and no more space left. In which case, this part of the partition has only one element; so we
should define a0(x) = 1. Fortunately, for x ≥ 1, this is automatically satisfied in an(x) = 2n.
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x. This put us back to the earlier problem of finding an(x) where
the roles of H and T are now played by S and D, respectively. (The
length of the sequence changes from n to n − 1 and the max run
length is x − 1 for S instead of x for H.) Hence, bn(x) = ‖Bn(x)‖
can be found by

bn(x) = 2an−1(x− 1)

[19].

Example 4.33. Continue from Example 4.27. We can check that
in 120 tosses of a fair coin, there is a very large probability that at
some point during the tossing process, a sequence of five or more
heads or five or more tails will naturally occur. The probability of
this is

2120 − b120(4)

2120
≈ 0.9865.

0.9865. In contrast to the second list, the first list shows no such
sequence of five heads in a row or five tails in a row. In the first
list, the longest sequence of either heads or tails consists of three
in a row. In 120 tosses of a fair coin, the probability of the longest
sequence consisting of three or less in a row is equal to

b120(3)

2120
≈ 0.000053,

which is extremely small indeed. Thus, the first list is almost
certainly a fake. Most people tend to avoid noting long sequences
of consecutive heads or tails. Truly random sequences do not share
this human tendency! [20, Ex. 7.1 p 42–43]
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